Naast het uitvoeren van wetenschappelijk onderzoek heeft het WPR ook als doel om kennisdeling te bevorderen tussen wetenschap, beleid, uitvoering en praktijk. Het WPR geeft op drie manieren invulling aan dit doel: 1) het organiseren van symposia en kennissessies, 2) het uitgeven van een digitale nieuwsbrief en 3) het onder de aandacht brengen van relevante internationale publicaties op het terrein van risicoverevening.
Symposia en kennissessies
op 26 januari 2024 vond op de campus van de Erasmus Universiteit Rotterdam de kick-off plaats van het WPR. Samen met ruim 50 vereveningsexperts uit onderzoek, beleid en praktijk zijn we die middag in gesprek gegaan over 1) het belang van wetenschappelijk onderzoek voor de doorontwikkeling van de risicoverevening, 2) de doelen van het WPR en 3) de invulling van het WPR in termen van onderzoek, samenwerking en kennisdeling. De kick-off heeft een lange lijst aan ideeën opgeleverd voor onderzoek en kennisdeling. U kunt het verslag van de paneldisccussie downloaden als ook de slides.
Relevante internationale publicaties
Van Kleef, R.C., Reuser, M., Stam, P.J. & Van de Ven, W.P.M.M. A framework for ex-ante evaluation of the potential effects of risk equalization and risk sharing in health insurance markets with regulated competition (2024). Health Economics Review 14, 57 (2024). https://doi.org/10.1186/s13561-024-00540-4.
Dit artikel biedt een conceptueel kader voor het ex-ante evalueren van risicoverevenings/risicodelingsmodellen in zorgverzekeringsmarkten met gereguleerde concurrentie. Het artikel bestaat uit drie delen. Het eerste deel bespreekt 22 potentiële effecten van risicoverevening en risicodeling. Het tweede deel geeft een overzicht en categorisering van kwantitatieve maatstaven die in de literatuur worden gebruikt voor het evalueren van risicoverevenings/risicodelingsmodellen. Belangrijke observaties zijn dat niet alle maatstaven die worden gebruikt even relevant zijn in het licht van de potentiële effecten en dat niet voor alle 22 potentiële effecten geschikte maatstaven bestaan. Dit leidt tot een belangrijke aanbeveling voor onderzoekers: ontwikkel aanvullende maatstaven voor het kwantificeren van de potentiële effecten van risicoverevening en risicodeling. Het derde deel legt het raamwerk van potentiële effecten en maatstaven naast het WOR-toetsingskader (versie: 2017-2022). Belangrijke observaties zijn dat veel van de 22 effecten niet expliciet worden meegenomen in het WOR-toetsingskader (niet kwantitatief, noch kwalitatief) en dat de set van kwantitatieve maatstaven incompleet en op sommige punten zelfs niet valide is. Dit leidt tot een belangrijke aanbeveling voor beleidmakers: houd het toetsingskader tegen het licht en zorg ervoor dat alle potentiële effecten expliciet worden meegenomen en meegewogen (waar mogelijk kwantitatief, en anders kwalitatief). Inmiddels is de lijst van 22 potentiële effecten toegevoegd aan het WOR-toetsingskader (versie: 2023-heden). Desondanks blijft het WOR-toetsingskader onzes inziens voor verbetering vatbaar, met name als het gaat om de set van kwantitatieve maatstaven (die nog steeds incompleet en op sommige punten niet valide is). Werk aan de winkel!
Ismail, I., P.J.A. Stam, F.R.M. Portrait, A. van Witteloostuijn & X. Koolman. Addressing unanticipated interactions in risk equalization: A machine learning approach to modeling medical expenditure risk (2024). Economic Modelling. https://doi.org/10.1016/j.econmod.2023.106564
Dit artikel onderzoekt de potentiële meerwaarde van het gebruik ‘machine learning’ (ML) voor risicoverevening. De auteurs laten zien hoe machine learning kan helpen bij het opsporen van relevante interactietermen tussen risicofactoren. Een vernieuwend aspect van dit onderzoek is dat de auteurs gebruikmaken van een zeer grote dataset (N=17m) waardoor complexere interactietermen kunnen worden opgespoord dan in eerdere onderzoeken waarin veel kleinere datasets zijn gebruikt. Een ander vernieuwend aspect is dat het artikel een uitgebreide beschrijving geeft van de ML-technieken die worden gebruikt, te weten Random Forest (RF) en Gradient Boosting Machines (GBM). In een empirische simulatie passen de auteurs deze ML-technieken toe op het Nederlandse vereveningsmodel. Daarbij maken zij gebruik van een ‘split-sample’ methode ter voorkoming van ‘overfitting’. Uit de resultaten blijkt dat het gebruik van ML kan leiden tot een toename van de verklaarkracht van het vereveningsmodel en een afname van de voorspelbare winsten/verliezen voor specifieke subgroepen. Het discussiehoofdstuk bespreekt de voor- en nadelen van het gebruik van ML voor risicoverevening.
Van Kleef, R.C., M. Reuser, T.G. McGuire, K. Beck, J. Wasem, S. Brammli-Greenberg, J. Armstrong, E. Schokkaert, F. Paolucci, and R.P. Ellis. Scope and Incentives for Risk Selection in Health Insurance Markets With Regulated Competition: A Conceptual Framework and International Comparison (2024). Medical Care Research & Review. https://doi.org/10.1177/10775587231222584.
Dit artikel biedt een conceptueel kader voor het analyseren van “scope” (i.e., mogelijke acties van verzekeraars en verzekerden) en “incentives” voor risicoselectie in zorgverzekeringsmarkten met gereguleerde concurrentie. Hierbij worden vier hoofdvormen van risicoselectie onderscheiden: 1) risicoselectie door verzekerden in/uit de markt, 2) risicoselectie door verzekerden tussen verzekeringsproducten, 3) risicoselectie door verzekeraars via productdifferentiatie en 4) en risicoselectie door verzekeraars via andere wegen zoals marketing, klantenservice en aanvullende verzekeringen. Het conceptuele kader bespreekt per hoofdvorm hoe “stelselaspecten” van invloed zijn op de scope en incentives voor selectie. Selectie is alleen een probleem als zowel scope als incentives aanwezig zijn. Vervolgens wordt het conceptuele kader toegepast op negen zorgverzekeringsmarkten met gereguleerde concurrentie in Australië, Europa, Israel en de Verenigde Staten. Een belangrijke observatie is dat er grote verschillen bestaan in scope en incentives tussen zorgverzekeringsmarkten. Dit verklaart waarom een selectievorm in de ene verzekeringsmarkt problematischer is dan in de andere. In het discussiehoofdstuk wordt een aantal beleidsimplicaties besproken. Één van die beleidsimplicaties is dat risicoselectie op twee manieren kan worden tegengegaan: 1) via het verkleinen van de ‘scope’ en 2) via het verminderen van ‘incentives’. Een nadeel van het verkleinen van de scope voor risicoselectie (bijvoorbeeld via productstandaardisatie) is echter dat daarmee ook de scope voor doelmatigheid wordt verkleind. In theorie, gaat de voorkeur daarom uit naar het verminderen van de incentives voor risicoselectie.
Van de Ven, W.P.M.M. & R.C. van Kleef (2024). A critical review of the use of R2 in risk equalization research? (2024). European Journal of Health Economics. https://doi.org/10.1007/s10198-024-01709-8.
Bijna alle empirische onderzoeken waarin een risicovereveningsformule wordt geschat, presenteren de waarde van de statistische maatstaf R2 (op individueel niveau). De R2-waarde wordt vaak (impliciet) geïnterpreteerd als een maatstaf voor de mate waarin de vereveningsbijdragen de door regelgeving veroorzaakte voorspelbare winsten en verliezen op verzekerden wegnemen, waarbij een hogere R2-waarde duidt op betere prestaties. In veel gevallen weten we echter niet of een model met R2 = 0,30 de voorspelbare winsten en verliezen meer reduceert dan een model met R2 = 0,20. In dit artikel wordt beargumenteerd dat de R2 in de context van risicoverevening moeilijk te interpreteren is als maatstaf voor selectieprikkels, tot verkeerde en misleidende conclusies kan leiden als het wordt gebruikt als maatstaf voor selectieprikkels, en daarom niet bruikbaar is voor het meten van selectieprikkels. Hetzelfde geldt voor gerelateerde statistische maatstaven zoals de Mean Absolute Prediction Error (MAPE), Cumming’s Prediction Measure (CPM) en de Payment System Fit (PSF). Er zijn enkele uitzonderingen waarbij de R2 nuttig kan zijn. De aanbeveling van de auteurs is om de R2 ofwel met een duidelijke, valide en relevante interpretatie te presenteren, ofwel de R2 niet te presenteren. Hetzelfde geldt voor de gerelateerde statistische maatstaven MAPE, CPM en PSF. De beleidsrelevantie van dit artikel is dat de R2 als evaluatiemaatstaf van de kwaliteit van een vereveningsmodel in het algemeen niet geschikt is. Goede evaluatie-maatstaven zijn de voorspelbare winsten en verliezen per verzekerde voor relevante subgroepen, bijvoorbeeld subgroepen van gezonde verzekerden en subgroepen van ongezonde verzekerden.
Politzer, E. (2024). Utilization Thresholds in Risk Adjustment Systems (2024). American Journal of Health Economics 10: 470-503. https://doi.org/10.1086/724791?journalCode=ajhe
Dit artikel onderzoekt de vormgeving van drempels die worden gebruikt bij de indeling van verzekerden in risicoklassen. De auteur neemt de DDD-drempel die wordt gebruikt bij Farmacie Kosten Groepen (FKGs) als voorbeeld. DDD staat voor ‘Defined Daily Dose’ en de DDD-drempel geeft aan hoeveel standaard dagdoseringen van een bepaald medicijn een verzekerde in het voorgaande jaar moet hebben gebruikt om in een FKG te worden ingedeeld. De auteur van het artikel laat zien hoe de hoogte van de DDD-drempel van invloed is op zowel de verevenende werking als de perverse prikkels voor verzekeraars (dat wil zeggen: de prikkels voor verzekeraars om verzekerden de DDD-drempel te laten passeren ten behoeve van een hogere vereveningsbijdrage). In de praktijk wordt vaak gebruikgemaakt van een uniforme DDD-drempel. In een empirische simulatie met Amerikaanse data laat de auteur zien hoe een FKG-specifieke DDD-drempel kan leiden tot een verbetering van de verevende werking. Vervolgens laat de auteur zien hoe het gebruik van meerdere drempelwaarden per FKG kan leiden tot een verdere verbetering van de verevenende werking en een vermindering van perverse prikkels.