Empirical evidence and future directions for equity weighting

Vivian Reckers-Droog
PhD candidate, department of Health Economics, ESHPM
September 16, 2019

Proportional shortfall

Proportional shortfall

Proportional shortfall

Why proportional shortfall?

Main reasons:

1. Balances concerns for 'severity of illness' and 'fair innings'
2. Avoids ageism in reimbursement decisions (i.e. equal weight for younger and older patients)

A brief history of..

A brief history of..

Since 2001, seven empirical studies examined whether proportional shortfall is aligned with societal preferences.

Support for proportional shortfall

Study	Year	Country	Design	N	Sample	Support for PS
Stalk et al.	2005	NL	Ranking exercise	65	Convenience	++
Olsen	2013	Norway	Pairwise- choice task	503	General public	--
Brazier et al.	2013	UK	DEE	3,669	General public	$--/-$
Van de Wetering et al.	2015	NL	DEE	1,205	General public	--
Bobinac et al.	2015	NL	WTP	1,320	General public	-
Rowan et al.	2016	UK	DCE	3,669	General public	+
Richardson et al.	2017	Australia	Paired comparison	606	General public	+

[^0]

Support for proportional shortfall

Study	Year	Country	Design	N	Sample	Support for PS	Support for Age
Stolk et al.	2005	NL	Ranking exercise	65	Convenience	++	++
Olsen	2013	Norway	Pairwisechoice task	503	General public	--	++
Brazier et al.	2013	UK	DCE	3,669	General public	--/-	NA
Van de Wetering et al.	2015	NL	DCE	1,205	General public	--	--
Bobinac et al.	2015	NL	WTP	1,320	General public	-	++
Rowen et al.	2016	UK	DCE	3,669	General public	+	NA
Richardson et al.	2017	Australia	Paired comparison	606	General public		$++$

Support for proportional shortfall (2)

- Public generally prefers prioritising younger over older patients
- Consequence of using proportional shortfall is that older patients may more frequently be prioritised

How to move forward?

Adjust proportional shortfall?

- To align proportional shortfall with preferences for prioritising younger patients
- To meet the objective of avoiding ageism (by giving older patients a lower weight)

Adjust monetary reference values?

- To reflect severity-related preferences within different age groups

Societal preferences for severity and age

Two stated-preference studies conducted to examine (the strength of) societal preferences for severity and age.

Choice- and person-trade-off tasks:

- Elicit preferences for priority setting based on severity, age, and combination of both (status: in press)

Contingent-valuation tasks:

- Estimate the severity-dependent willingness to pay per QALY at different ages (status: data collection)

Societal preferences

Difference in severity, same age:

- Preference for reimbursing treatment for more severely ill patients

Societal preferences

Difference in severity, same age:

- Preference for reimbursing treatment for more severely ill patients

Difference in age, same severity level:

- Preference for reimbursing treatment for younger patients

Societal preferences

Difference in severity, same age:

- Preference for reimbursing treatment for more severely ill patients

Difference in age, same severity level:

- Preference for reimbursing treatment for younger patients

Difference in severity and age:

- Preference for reimbursing treatment for younger patients, regardless of patients' severity level

Strength of preferences

\square Small difference \quad Large difference

Strength of preferences

- Small difference \quad Large difference

Crapmos

Crapms

torme

Current decision framework

Severity-dependent WTP at different ages

		Age			
		10 years	20 years	40 years	70 years
$\begin{aligned} & \text { गे } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{む} \end{aligned}$	10	$€$	$€$	$€$	$€$
	30	$€$	ϵ	ϵ	$€$
	50	$€$	$€$	$€$	$€$
	70	$€$	$€$	$€$	$€$
	90	$€$	$€$	$€$	$€$

Severity-dependent WTP at different ages

Hypothesis:

- Higher willingness to pay for relatively more severely ill and younger patients.

Future directions

- Severity and age may both be important, but age may be more important

Future directions

- Severity and age may both be important, but age may be more important
- Proportional shortfall or reference values may need to be adjusted to account for age-related societal preferences in society or to avoid ageism

Future directions

- Severity and age may both be important, but age may be more important
- Proportional shortfall or reference values may need to be adjusted to account for age-related societal preferences in society or to avoid ageism
- If severity is not 'it', what else may be relevant? Rarity of diseases? Prioritising patients at the end of life?

Future directions

- Severity and age may both be important, but age may be more important
- Proportional shortfall or reference values may need to be adjusted to account for age-related societal preferences in society or to avoid ageism
- If severity is not 'it', what else may be relevant? Rarity of diseases? Prioritising patients at the end of life?
- How to account for uncertainty in severity estimates that may impact the outcomes of reimbursement decisions?

Calculating the SAPCE

Versteegh et al. (2019) published a method and developed a tool for calculating the severity-adjusted probability of being cost effective.

By integrating:

- Uncertainty associated with patients' QALE (obtained from PSA)
- Uncertainty associated with remaining QALE in absence of disease (based on age- and sex-adjusted population QALE)

And:

- Obtaining a distribution for (absolute and/or) proportional shortfall
- Calculating the probability a new technology is cost-effective given the different reference values that may apply

Table 1: Example calculation of the severity-adjusted probability of being cost-effectiveness

iMTA Disease Burden Calculator

iDBC tool (R based) available for:

- The Netherlands, Norway, USA, Spain, Germany, and the UK
- (Free) download from iMTAs website: https://imta.shinyapps.io/iDBC/

Want to discuss further?
 Contact me

Vivian Reckers-Droog reckers@eshpm.eur.nl

Additional slides

Crapmos

Proportional shortfall - Calculations

Different calculations in context of (strong) heterogeneity, episodic disease course, and prevention.

Heterogeneity:

- Calculated as a weighted average

Episodic course:

- Calculated and presented per subgroup during episode
- Representative of shortfall during episode, but total shortfall is overestimated due to exclusion of disease-free period

Proportional shortfall - Calculations (2)

Prevention:

- Moment of treatment
- Subgroup of patients who actually fall ill

Rationale:

- Illustrates the sense of urgency/necessity of preventive treatment
- Avoids differences between patients who receive preventive or curative care for the same disease
- Avoids 'double penalty' as relatively higher costs and lower average proportional shortfall would lead to relatively less favourable ICERs for preventive treatments
- Better aligned with objective to prioritise the more severely ill

[^0]: Level of support: -- = no, - = limited, + = modest, ++ = strong.

