Erasmus School of Health Policy & Management

Empirical evidence and future directions for equity weighting

Vivian Reckers-Droog
PhD candidate, department of Health Economics, ESHPM
September 16, 2019

(Zafus

Proportional shortfall

Proportional shortfall

Proportional shortfall

Why proportional shortfall?

Main reasons:

- 1. Balances concerns for 'severity of illness' and 'fair innings'
- 2. Avoids ageism in reimbursement decisions (i.e. equal weight for younger and older patients)

(Zafus

A brief history of...

A brief history of...

Since 2001, seven empirical studies examined whether proportional shortfall is aligned with societal preferences.

Support for proportional shortfall

Study	Year	Country	Design	N	Sample	Support for PS	
Stolk et al.	2005	NL	Ranking exercise	65	Convenience	++	
Olsen	2013	Norway	Pairwise- choice task	503	General public		
Brazier et al.	2013	UK	DCE	3,669	General public	/-	
Van de Wetering et al.	2015	NL	DCE	1,205	General public		
Bobinac et al.	2015	NL	WTP	1,320	General public	-	
Rowen et al.	2016	UK	DCE	3,669	General public	+	
Richardson et al.	2017	Australia	Paired comparison	606	General public	+	

Level of support: -- = no, - = limited, + = modest, ++ = strong.

Support for proportional shortfall

Study	Year	Country	Design	N	Sample	Support for PS	Support for Age
Stolk et al.	2005	NL	Ranking exercise	65	Convenience	++	++
Olsen	2013	Norway	Pairwise- choice task	503	General public		++
Brazier et al.	2013	UK	DCE	3,669	General public	/-	NA
Van de Wetering et al.	2015	NL	DCE	1,205	General public		
Bobinac et al.	2015	NL	WTP	1,320	General public	-	++
Rowen et al.	2016	UK	DCE	3,669	General public	+	NA
Richardson et al.	2017	Australia	Paired comparison	606	General public	+	++

Level of support: -- = no, - = limited, + = modest, ++ = strong.

Support for proportional shortfall (2)

- Public generally prefers prioritising younger over older patients
- Consequence of using proportional shortfall is that older patients may more frequently be prioritised

How to move forward?

Adjust proportional shortfall?

- To align proportional shortfall with preferences for prioritising younger patients
- To meet the objective of avoiding ageism (by giving older patients a lower weight)

Adjust monetary reference values?

To reflect severity-related preferences within different age groups

(zafung

Societal preferences for severity and age

Two stated-preference studies conducted to examine (the strength of) societal preferences for severity and age.

Choice- and person-trade-off tasks:

 Elicit preferences for priority setting based on severity, age, and combination of both (status: in press)

Contingent-valuation tasks:

 Estimate the severity-dependent willingness to pay per QALY at different ages (status: data collection)

Societal preferences

Difference in severity, same age:

Preference for reimbursing treatment for more severely ill patients

Societal preferences

Difference in severity, same age:

Preference for reimbursing treatment for more severely ill patients

Difference in age, same severity level:

Preference for reimbursing treatment for younger patients

Societal preferences

Difference in severity, same age:

Preference for reimbursing treatment for more severely ill patients

Difference in age, same severity level:

Preference for reimbursing treatment for younger patients

Difference in severity and age:

 Preference for reimbursing treatment for younger patients, regardless of patients' severity level

Strength of preferences

Strength of preferences

Ezafus

Current decision framework

Severity-dependent WTP at different ages

		Age						
		10 years	20 years	40 years	70 years			
	10	€	€	€	€			
Severit 20	30	€	€	€	€			
	50	€	€	€	€			
	70	€	€	€	€			
	90	€	€	€	€			

Severity-dependent WTP at different ages

		Age					
		10 years	20 years	40 years	70 years		
	10	€	€	€	€ LOWER		
₹	30	€	€	€	€		
verity	50	€	€	€	€		
Sev	70	€	€	€	€		
	90	€ HIGHER	€	€	€		

Hypothesis:

 Higher willingness to pay for relatively more severely ill and younger patients.

Severity and age may both be important, but age may be more important

- Severity and age may both be important, but age may be more important
- Proportional shortfall or reference values may need to be adjusted to account for age-related societal preferences in society or to avoid ageism

- Severity and age may both be important, but age may be more important
- Proportional shortfall or reference values may need to be adjusted to account for age-related societal preferences in society or to avoid ageism
- If severity is not 'it', what else may be relevant? Rarity of diseases? Prioritising patients at the end of life?

- Severity and age may both be important, but age may be more important
- Proportional shortfall or reference values may need to be adjusted to account for age-related societal preferences in society or to avoid ageism
- If severity is not 'it', what else may be relevant? Rarity of diseases?
 Prioritising patients at the end of life?
- How to account for uncertainty in severity estimates that may impact the outcomes of reimbursement decisions?

Calculating the SAPCE

Versteegh et al. (2019) published a method and developed a tool for calculating the severity-adjusted probability of being cost effective.

By integrating:

- Uncertainty associated with patients' QALE (obtained from PSA)
- Uncertainty associated with remaining QALE in absence of disease (based on age- and sex-adjusted population QALE)

And:

- Obtaining a distribution for (absolute and/or) proportional shortfall
- Calculating the probability a new technology is cost-effective given the different reference values that may apply

Table 1: Example calculation of the severity—adjusted probability of being cost-effectiveness

_	Disease burd	den calculation				Model results	5		Combined resu	lts
Model	Patient	Population	AS	PS	Applicable	Incrementa	Incremental	ICER in €	INMB in €	Cost-
run	QALE	QALE ³			threshold in €	l costs in €	benefits			effective ^b
	(Qd)	(Qy1)	(Qn - Qd)	((Qn - Qd) /	(Vs)	(△C)	(△Q)	(△C/△Q)	(△Q*Vs - △C)	
				Qn)		\				
1	15	25	10	0.40	20,000	20,000	0.60	33,333	-8,000.00	0
2	16	24	8	0.33	20,000	8,000	0.50	16,000	2,000.00	1
3	17	28	11	0.39	20,000	15,000	0.60	25,000	-3,000.00	0
4	15	28	13	0.46	50,000	1 <mark>0</mark> ,000	0.50	20,000	15,000.00	1
5	14	27	13	0.48	50,000	10,000	0.40	25,000	10,000.00	1
6	13	26	13	0.50	50,000	25,000	0.30	83,333	-10,000.00	0
7	15	28	11	0.42	20,000	25,000	0.60	41,667	-13,000.00	0
8	15	32	17	0.53	50,000	15,000	0.50	30,000	10,000.00	1
9	16	25	9	0.36	20,000	25,000	0.60	41,667	-13,000.00	0
10	16	26	10	0.38	20,000	20,000	0.80	25,000	-4,000.00	0
Severity-	-adjusted pro	bability of being	cost-effecti	ve					(40%

ICER, incremental cost-effectiveness ratio, INMB = incremental net monetary benefit; QALE, quality-adjusted life expectancy; a Population QALE is age and sex specific; b 1 = Yes.

From: Versteegh MM, Ramos IC, Buyukkaramikli NC, Ansaripour A, Reckers-Droog VT, Brouwer WBF. Severity-Adjusted Probability of Being Cost Effective. *PharmacoEconomics* 2019;1-9.

iMTA Disease Burden Calculator

iDBC tool (R based) available for:

- The Netherlands, Norway, USA, Spain, Germany, and the UK
- (Free) download from iMTAs website: https://imta.shinyapps.io/iDBC/

Want to discuss further?
Contact me

Vivian Reckers-Droog reckers@eshpm.eur.nl

Additional slides

Proportional shortfall - Calculations

Different calculations in context of (strong) heterogeneity, episodic disease course, and prevention.

Heterogeneity:

Calculated as a weighted average

Episodic course:

- Calculated and presented per subgroup during episode
- Representative of shortfall during episode, but total shortfall is overestimated due to exclusion of disease-free period

Proportional shortfall – Calculations (2)

Prevention:

- Moment of treatment
- Subgroup of patients who actually fall ill

Rationale:

- Illustrates the sense of urgency/necessity of preventive treatment
- Avoids differences between patients who receive preventive or curative care for the same disease
- Avoids 'double penalty' as relatively higher costs and lower average proportional shortfall would lead to relatively less favourable ICERs for preventive treatments
- Better aligned with objective to prioritise the more severely ill

