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Abstract 

Nearly all empirical studies that estimate the coefficients of a risk equalization formula 

present the value of the statistical measure R2. The R2-value is often (implicitly) interpreted as 

a measure of the extent to which the risk equalization payments remove the regulation-

induced predictable profits and losses on the insured, with a higher R2-value indicating a 

better performance. In many cases, however, we do not know whether a model with R2 = 0.30 

reduces the predictable profits and losses more than a model with R2 = 0.20.  

In this paper we argue that in the context of risk equalization R2 is hard to interpret, can lead 

to wrong and misleading conclusions when used as a measure of selection incentives, and is 

therefore not useful for measuring selection incentives. The same is true for related statistical 

measures such as the Mean Absolute Prediction Error (MAPE), Cumming’s Prediction 

Measure (CPM) and the Payment System Fit (PSF). There are some exceptions where the R2 

can be useful.  

Our recommendation is to either present the R2 with a clear, valid interpretation or not to 

present the R2. The same holds for the related statistical measures MAPE, CPM and PSF. 
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1. Introduction 

Regulated health insurance markets are often characterized by premium regulation and open 

enrolment. Although these regulations can help improve the affordability and accessibility of 

health insurance coverage for high-risk people, they also create predictable profits and losses 

on insured, and therefore provide insurers with incentives for risk selection. To prevent the 

adverse effects of risk selection, a risk equalization scheme can be implemented. That is a 

system of risk adjusted equalization payments to and from the insurers that compensate 

insurers for differences in individuals’ expected healthcare expenses that are not allowed to be 

explicitly reflected in premium differences. The goal of risk equalization is to eliminate the 

regulation-induced incentives for risk selection1 by compensating insurers for predictable 

profits and losses (Van de Ven et al., 2023).2 Therefore, an important aspect of the evaluation 

of risk equalization formulas is the extent to which the risk equalization payments remove the 

regulation-induced predictable profits and losses on the insured. 

 

With predictable profits and losses we mean the profits and losses that, given the premium 

regulation, can be predicted by consumers and/or insurers prior to the contract period. That is, 

there is an information asymmetry in the sense that consumers and/or insurers have more 

predictive information about future healthcare expenses than the information that is used for 

calculating the equalization payments. Insurers have rich panel data that they can use to make 

better predictions of the future individual healthcare expenses than the predictions based on 

imperfect risk equalization. Insurers can use their information surplus for risk selection, which 

can have negative effects in terms of quality of care, efficiency, and affordability (see e.g., 

Van de Ven and Ellis, 2000). Insurers can learn about predictable profits and losses in subtle 

ways. For example, any correlation between consumers’ preferences regarding health 

insurance and their health risk can reveal a predictable profit or loss. When insurers know 

these correlations (e.g., based on revealed preferences in a prior period), they can exploit the 

associated predictable profits and losses via the design of health insurance products. In 

addition, insurers can base their selection strategy on the information that is increasingly 

presented in the literature about which groups of people generate predictable profits or losses, 

given a certain equalization formula (e.g., Van de Ven and Ellis, 2000; Lamers, 1999 and 

2001; Van Barneveld et al., 2000 and 2001; Shen and Ellis, 2001; Van Kleef and Van Vliet, 

2022; Van Kleef et al., 2024). And, finally, insurers don’t need to know which specific 

individuals are (un)profitable, it is sufficient for them to know that there are (un)profitable 

individuals. They can then use general selection tools, e.g., different level of deductibles, the 

copayment structure and benefits design. Consumers will then use their information surplus 

for choosing the most appropriate health insurance product (adverse selection). Of course, to 

 
1 Selection can be defined as “actions by consumers and insurers to exploit unpriced risk heterogeneity and break 

pooling arrangements” (Newhouse, 1996). 

The insurers’ incentives for risk selection are determined by both the regulation-induced predictable profits and 

losses on the insured and the insurer’s costs of selection, e.g., a reduction of good reputation and the costs of the 

selection activities (e.g., finding out who are the (un)profitable people and designing, marketing, and 

administering new insurance products to deter unprofitable people and attract profitable people). In this paper we 

will abstract from these costs and only focus on predictable profits and losses.  
2 For reasons of fairness there may be some exceptions, e.g., if predictable profits reflect underutilization (Van 

de Ven and Ellis, 2000, 783-784; see also McWilliams et al., 2023).  
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prevent selection the risk equalization needs only to compensate for predictable profits and 

losses as far as insurers and/or consumers can exploit them by selection actions. But it is hard 

to think of any predictable profits or losses that cannot be exploited by selection actions.3  

 

The coefficients of the risk equalization formula are typically estimated by means of the 

Ordinary Least Squares (OLS) regression method with individual healthcare expenses as 

dependent variable and a set of risk adjusters as explanatory variables. OLS finds the set of 

coefficients that minimizes the “sum of squared residuals”, given the set of risk adjusters. The 

statistical software used to run OLS regressions typically also presents the so-called R2.4 The 

R2-value indicates the proportion of the total variance in individual expenditures that is 

explained by the linear influence of the set of risk adjusters, and ranges between zero and 

one.5 In empirical evaluations of risk equalization models, researchers routinely present the 

R2-value, but often without an explicit interpretation. More specifically, researchers and 

policymakers often implicitly use the R2 as a measure to evaluate the predictive performance 

of a risk equalization model, with a value closer to one indicating a better performance. By 

predictive performance we mean the extent to which a risk equalization model reduces 

predictable profits and losses.  

 

The goal of this paper6 is to critically review the use of R2 in risk equalization research. In 

section 2 we discuss why the R2 is hard to interpret and can lead to wrong and misleading 

conclusions regarding the predictive performance of a risk equalization model. In many cases, 

we do not know whether a risk equalization model with R2 = 0.30 reduces the predictable 

profits and losses more than a model with R2 = 0.20. In section 3 we argue that part of our 

critique on using the R2 as a performance measure also holds for other statistical metrics such 

as the Mean Absolute Prediction Error (MAPE), Cumming’s Prediction Measure (CPM), and 

the Payment System Fit (PSF). While the R2 is inappropriate for indicating the extent to 

which a risk equalization model mitigates predictable profits and losses, it can be useful for 

other purposes, which will be discussed in section 4. Section 5 summarizes the conclusions, 

which will be discussed in section 6.  

Finally, unfortunately, we cannot answer the question: Why do we use R2 so often in risk 

equalization research? We will speculate on some hypothetical answers in section 6.4. 

 
3 Achieving a level playing field for insurers and achieving maximum cross-subsidies among consumers require 

that all risk factors that insurers are not allowed to use for premium differentiation should be included in the risk 

equalization (Van de Ven et al., 2023). 
4 The R2 can be calculated as: the variance of predicted expenses divided by the variance of actual expenses, or 

the square of the correlation between predicted expenses and actual expenses, or one minus the ratio of the 

variance of the prediction error divided by the variance of actual expenses (where the prediction error equals the 

difference between predicted expenses by the risk equalization model and actual expenses) (Van Veen et al., 

2015). These three ways of calculating the R2 are only equivalent when an OLS-model is used and expenses are 

predicted on the full sample. If this is not the case, the only correct way of calculating the R2 is the third method 

(i.e., the R2 proposed by Efron, 1978).  
5 Ideally, to prevent overfitting R2-values should be reported which are based on out-of-sample predictions. In 

that case Efron’s (1978) R2 should be used. 
6 This paper is partly based on several previous papers by the authors and their colleagues (see the references). 

The novelty of this paper is that it brings together some relevant R2-related aspects of these previous papers, 

builds upon them, extends the analysis, provides several new arguments and insights, and comes with new 

conclusions and recommendations concerning the R2 in the context of risk equalization. 
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2. R2 is hard to interpret  

Nearly all empirical studies that evaluate the predictive performance of risk equalization 

models present the statistical R2-value (Van Veen et al., 2015). The R2-value is often 

(implicitly) interpreted as a measure of the extent to which the risk equalization payments 

remove the regulation-induced ‘predictable profits and losses on the insured’ (i.e., the 

incentives for selection), with a higher R2-value indicating a better performance. For three 

reasons, however, the R2-value is hard to interpret as a measure of selection incentives. First, 

the maximum R2-value is typically unknown. Consequently, the R2-value does not indicate to 

what extent predictable profits and losses remain after risk equalization. Second, the R2-value 

is nonlinearly related to the predicted profits and losses. As a result, a change in R2-value due 

to the inclusion of a new risk adjuster does not indicate the extent to which that risk adjuster 

contributes to the reduction of predictable profits and losses. Third, a high R2-value does not 

necessarily imply a better predictive performance than a low R2-value. Consequently, 

comparing alternative equalization models solely on the basis of the R2-value can lead to 

misleading conclusions about which model is to be preferred. Below, we explain these three 

problems in more detail.   

 

2.1. No benchmark because the maximum R2-value is typically unknown 

The R2 indicates the proportion of the total variance in individual healthcare expenses that can 

be predicted by the risk adjusters. A major problem with the interpretation of the R2-value is 

that a substantial part of the variance in individual healthcare expenses is not predictable, due 

to e.g., accidents and the unforeseen onset of new diseases, and thus cannot be anticipated on 

by insurers and consumers. Therefore, when assessing the predictive performance of a risk 

equalization model we are more interested in the proportion of the maximum predictable 

variance that is predicted by the risk adjusters than in the proportion of the total variance that 

is predicted by the risk adjusters (= R2-value). However, in general we do not know the 

maximum R2-value for a specific setting. This lack of a benchmark makes R2 hard to interpret 

and an inappropriate measure of the extent to which the risk equalization payments remove 

the regulation-induced predictable profits and losses. More specifically, the R2-value does not 

indicate to what extent predictable profits and losses remain after risk equalization.  

 

Some studies have dealt with the question what the maximum R2 is that can be achieved by a 

set of prospective7 risk adjusters in a specific setting.8  These studies are based on different 

assumptions about the anatomy of the variance of the actual expenses. Newhouse et al. (1989) 

 
7 The R2 of prospective equalization models captures only predictable variance, in contrast to the R2 of 

concurrent equalization models that also captures unpredictable variance. To our knowledge there is no study on 

the maximum R2 for concurrent models.  
8 Other studies have analyzed the extent of predictable profits and losses that remain after risk equalization by 

simulating a ‘best available’ prediction model for insurers. For different models that the regulator could use, 

these studies present the predictable profits and losses that insurers could make with their ‘best available’ 

prediction model. Although these studies are informative, they underestimate the potential profits (losses) that 

insurers could make (avoid) because in practice insurers and consumer most likely have more predictive 

information than is included in these ‘best available’ models. Examples of such studies are Lamers (1999 and 

2001), Van Barneveld et al. (2000 and 2001), and Shen and Ellis (2002).    
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and Newhouse (1996) assumed that the variance of the actual expenses can be divided into 

three components:9 

1. The first component is a fixed effect, i.e., the constant above or below average 

expenses of a person over the last years. For the analyzed data set this component has 

been estimated to be at most 15-20 percent of total variance. 

2. The second component is a predictable, but time-varying effect, i.e., the above or 

below average expenses of a person in the next period but that would not persist in 

later periods. This component is estimated to be another 3-5 percent of total variance. 

3. The third component is the random component, i.e., the unpredictable variance.  

Newhouse (1996) concludes that with risk factors that are based on observed individual 

utilization/expenses in prior periods one can explain around 20-25 precent of the annual 

actual expenses. However, this percentage is a lower bound of the maximum predictable 

variance because there may be additional predictive information that is not reflected in past 

utilization/expenses (e.g., giving birth in the next period). Therefore, consumers or insurers 

could potentially predict more than the 20-25 percent, but how much more is unknown.  

Van Vliet (1992) compared four different error component models and concluded that for the 

analyzed data set ‘no more than 20 percent of annual costs variations are predictable at the 

individual level’.   

 

One should be careful in using the maximum R2 estimated in one setting as a benchmark in 

other settings because the maximum R2 is context specific and may depend on the following 

determinants (Van de Ven and Ellis, 2000, 790-793):  

• The type of services under analysis.  

For example, outpatient care and pharmaceutical care are typically more predictable than 

inpatient care, and long-term care is typically more predictable than acute care.  (Van de 

Ven and Ellis, 2000, 790). This implies that for one set of services the maximum R2 can be 

lower/higher than for another, ceteris paribus.  

• The (sub)population under analysis.  

Kronick et al. (1995) concluded that expenditures are much more predictable among 

persons with chronic conditions than for other populations. They hypothesize that among 

persons with chronic conditions (disabilities or diseases) a much greater portion of 

resource utilization results from chronic problems and their complications that persist 

from year to year, and a smaller portion from acute episodes that lead to short-term spikes 

in resource use but are not followed by long-term needs. The same holds for age, with 

elderly people having on average more chronic diseases than young people. Newhouse et 

al. (1989,1993) and Van Vliet (1992) found empirical evidence that differences in health 

expenditures for older individuals are more predictable than those for young people. This 

implies that for one population the maximum R2 can be lower/higher than for another, 

ceteris paribus. 

• The price of healthcare services 

A change of the price of healthcare services may influence the R2-value. For example, Van 

 
9 For a nontechnical description of this method see Newhouse et al. (1997). 
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Kleef et al. (2018, p. 414-5) show that a substantial reduction of the price for kidney 

dialysis, which was included as a risk adjuster in the risk equalization formula, ceteris 

paribus resulted in a substantial decrease in the R2-value with 0.05 (from about 0.25 to 

0.20). This implies that for one set of healthcare prices the maximum R2 can be 

lower/higher than for another, ceteris paribus. 

• The level of effective medical technology 

Van de Ven and Ellis (2000, p. 791) hypothesize a positive relation between R2 and the 

level of medical technology. An increase of the level of effective medical technologies 

may keep alive at-risk patients who otherwise would have died, and thereby increases the 

proportion of chronically ill persons. Their healthcare expenses are better predictable than 

those of healthy people without chronic problems (see above). This implies that for one 

level of medical technology the maximum R2 can be lower/higher than for another, ceteris 

paribus. 

• The length of the period being predicted 

By using a longer period for predicting healthcare expenses (e.g., a year rather than a 

month) some of the random variation is averaged out, which - under the assumption that 

the systematic variation largely remains unchanged - increases the R2. This implies that 

for one length of period the maximum R2 can be lower/higher than for another, ceteris 

paribus. 

Because of these many determinants, the maximum R2-value can substantially differ across 

settings and over time. For example, the above-mentioned results about the maximum R2-

values presented by Newhouse (1996) and Van Vliet (1992) are based on data sets from the 

1970s. These estimated maximum R2-values seem no longer relevant, as recent studies that 

estimate a prospective risk equalization model based on data sets from forty years later find 

R2-values somewhere in the range of 0.30-0.35. For example, Van Kleef et al. (2020) found 

an R2 of 0.30, which is clearly below the maximum R2 because they also found that the 

equalization model studied in their paper undercompensates insurers for chronically ill 

people. 

So, due to a lack of a benchmark one should be careful in using the R2 as a measure to 

indicate the extent to which a risk equalization model reduces the regulation-induced 

predictable profits and losses. Moreover, one should be careful to compare the R2-values 

across different settings and over time. Ideally, to have a benchmark researchers should 

estimate the maximum R2 on the same (longitudinal) data base that is used for estimating the 

coefficients of the risk equalization model. In practice, however, this is hardly done.10  

 

2.2. R2 is nonlinearly related to the predicted profits and losses 

Even if we knew the maximum R2, the R2-value would still be hard to interpret. An x-percent 

decrease of the difference between R2 and the maximum R2, as a result of an improvement of 

the equalization formula, cannot be interpreted as an x-percent decrease of the predictable 

profits and losses, because the relation between R2 and the predicted profits and losses is 

nonlinear. The amount of profit an insurer can make by exploiting its private information on 

risk is a nonlinear function of the amount of that information, and, from the point of view of 

 
10 For an example of such analysis, see Lamers (2001, p. 426). 
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the regulator, the nonlinearity can be in exactly the wrong direction because the last 

percentage point of variance explained may have a larger effect on profit than the earlier 

changes (Newhouse et al., 1989; Newhouse 1996; Van Barneveld et al., 2000). For example, 

Van Barneveld et al. (2000, p. 134) found that the first five percentage points increase in the 

R2 lead to a reduction of the mean absolute predicted result (=profit/loss) of 360 Dutch 

guilders, whereas the last five percentage points increase in the R2 lead to a reduction of 720 

Dutch guilders. Newhouse et al. (1989) found similar results.  

 

The quadratic weighing of residuals (i.e., the insurers’ actual profits and losses) in the R2 

results in a nonlinear relation between R2 and the predicted profits/losses, and can lead to 

misleading conclusions in the case of small predictable profits and losses. Although large 

residuals may be more problematic than small residuals, it is not obvious that quadratic 

weighting is better for the evaluation of the regulation-induced profits and losses than 

alternative forms of weighting. According to Layton et al. (2017) the argument in favor of 

squaring the residuals, such as in R2, has a sound basis in welfare economics, where it is 

normally assumed that the welfare loss of a distortionary incentive is proportional to the 

square of the distortionary incentive. Although this squaring-argument may hold in the 

familiar context of a tax (Harberger, 1964), it is not clear that it is a valid argument for 

squaring the residuals as is done in R2 in the context of risk equalization. First, the 

distortionary incentives are the (by consumers and insurers) predictable profits and losses and 

not the actual profits and losses (i.e., the residuals), which are much larger and have more 

extreme outliers (that weigh heavily in the squaring) than the predictable profits and losses. 

The R2 is a function of the squared actual profits/losses and not of the predictable 

profits/losses. The R2 attaches enormous weight to large outliers: the one person in a sample 

with an actual loss of a million euros will add as much to the variance as 1,000,000 people 

with an actual loss of 1,000 euro (Van de Ven and Ellis, 2000, p. 810). Second, in the case of 

selection incentives one could hypothesize that above a certain level of the distortionary 

incentive the welfare loss looks more like a flat curve than a quadratic function of the 

distortionary incentive. The higher the undercompensations and the more stable the 

undercompensations are over time, the more insurers may respond to the distortionary 

incentives. However, it could be hypothesized that at a certain level of undercompensation U 

the insurers have achieved their ‘maximum selection actions’, i.e., they do their utmost best to 

get rid of unprofitable patients and there are no additional cost-effective selection actions. 

This would imply that with undercompensations larger than U the welfare loss resulting from 

risk selection is a flat curve. So, it is not obvious that quadratic weighting is better than 

alternative forms of weighting.11 

The quadratic weighing of residuals can lead to misleading conclusions in the case of small 

predictable profits and losses. For example, Van Kleef (2022) present results that the addition 

of socio-economic characteristics to a relatively good performing risk equalization model 

increases the R2 from 0.3438 to 0.3440. The elimination of the relatively small predictable 

profits and losses on the different socioeconomic groups results in only a seemingly 

 
11 Alternatively, one can apply measures such as the Mean Absolute Prediction Error (MAPE) and Cumming’s 

Prediction Measure (CPM), which both are a function of absolute deviations, rather than squared deviations (see 

section 3.2 and 3.3). 
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negligible increase of the R2. If a regulator would base his decision solely on the R2-value 

rounded to three decimal places (0.344) one might conclude not to include these risk adjusters 

in the risk equalization model. However, a regulator might find the addition of these risk 

adjusters to be relevant as they eliminate the incentives for risk selection against socio-

economic groups and thereby eliminate the negative welfare effects of that type of risk 

selection. This example illustrates that evaluating (potential) risk adjusters solely on the basis 

of R2 can lead to misleading conclusions.  

 

2.3. A high R2 does not necessarily imply a better predictive performance than a low R2 

According to Layton et al. (2018b, p. 141-142) it is intuitive that a higher R2 should improve 

the performance of a payment system with respect to selection problems. This reflects the 

general perception that a high R2 indicates a better predictive performance of the risk 

equalization model than a low R2. However, this general perception is not necessarily correct. 

Below we give some counterexamples. 

 

A first example is the comparison of the R2-values for risk equalization models that explain 

different types of healthcare expenses. For example, one model explains outpatient expenses 

and the other model explains inpatient expenses. Although the first model may have a higher 

R2 than the second model, it does not necessarily mean that it reduces the selection incentives 

more than the second model. The reason is that outpatient expenses are much more 

predictable than inpatient expenses (and therefore has a higher maximum R2). For similar 

reasons a higher R2-value in setting A than in setting B does not necessarily mean that 

selection incentives are smaller in A than in B (see our discussion in section 2.1).     

 

A second example is given by Van Barneveld et al. (2000, p. 136-137). They simulated on the 

same data set both several risk equalization models that a regulator could use and a selection 

model that an insurer could use. Their empirical results showed two regulator-models such 

that the model with the higher R2 resulted in higher incentives for selection (and not in lower 

incentives). They concluded that R2-values can be misleading if they are used as an indicator 

of an insurer’s incentives for selection.  

 

A third example is the comparison of the R2 of prospective and retrospective risk equalization 

models. Prospective equalization models include risk adjusters based on information that is 

known before the prediction period (e.g., diagnoses in the prior year), while concurrent 

equalization models use risk adjusters based on information that becomes known during the 

prediction period (e.g., diagnoses in the current year). The R2 of concurrent models is 

typically higher than that of prospective models because the correlation between healthcare 

expenses and current-year diagnoses is inherently higher than the correlation between 

healthcare expenses and prior-year diagnoses. However, it would be incorrect to conclude that 

because of their higher R2 concurrent models reduce the incentives for risk selection more 

than prospective models. Comparison of prospective and concurrent models on the basis of R2 

alone is problematic because the R2-value of a concurrent model does not only capture 

‘predictable’ variance in healthcare expenses but also some ‘unpredictable’ variance related to 

occurrence of new health problems that could not have been predicted ex-ante. So, without 
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further information and without a relevant benchmark the difference between the R2 for 

prospective and concurrent models is hard to interpret.  

 

These examples illustrate that the classical interpretation that a high R2 indicates a better 

predictive performance than a low R2, can be misleading in the context of risk equalization. 

 

2.4. Conclusion 

Most empirical studies that estimate the coefficients of a risk equalization regression model 

(routinely) present the R2-value, which is often (implicitly) interpreted as a measure of the 

extent to which the risk equalization payments remove the regulation-induced predictable 

profits and losses on the insured. However, it is hard to interpret the R2-values and to compare 

the R2-values across different settings for the following reasons:   

1. In nearly all studies there is no benchmark for interpreting the R2, because the 

maximum R2-value is unknown. Moreover, there are many determinants of the 

maximum R2, which are usually not taken into account. 

2. The R2 is nonlinearly related to the predicted profits and losses. 

3. A high R2 does not necessarily imply a better predictive performance than a low R2. In 

many cases we do not know whether a model with R2 = 0.30 reduces the predictable 

profits and losses more than a model with R2 = 0.20.  

 

In sum, in the context of risk equalization as a tool to reduce the predictable profits and losses 

the R2-value is hard to interpret, can lead to wrong and misleading conclusions12, and is 

therefore not useful for measuring selection incentives.  

 

3. Related measures-of-fit: similar problems 

Mutatis mutandis some or all the above-mentioned problems with the R2-values hold similarly 

for related statistical measures-of-fit such as the Mean Absolute Prediction Error (MAPE), 

Cumming’s Prediction Measure (CPM) and the Payment System Fit (PSF). 

 

3.1. Mean Absolute Prediction Error (MAPE) 

As discussed above, the conventional R2 attaches enormous weight to large outliers. A 

measure that does not weigh prediction errors differently, is the Mean Absolute Prediction 

Error (MAPE). The MAPE is calculated as the mean of the absolute value of ‘predicted 

expenses minus actual expenses’ across all individuals. The MAPE is less sensitive to 

 
12 The Dutch government repeatedly tried to convince the Parliament that the risk equalization works well by 

showing that the R2 in analyses explaining the “cost variation among insurers’ portfolios” is 0.98 (Tweede 

Kamer 2011a, Tweede Kamer 2011b). However, this is an incorrect argument. A problem with the R2 and other 

measures based on the variation in (residual) spending at the insurer level is that the outcomes of these measures 

heavily depend on the distribution of risk types across insurers’ portfolios and on the cost structure in these 

portfolios (Van Kleef et al., 2022). For example, consider the worst risk equalization formula with for each 

person the predicted expenses equal to the mean per person expenses. Such a risk equalization model has 

maximum predictable profits and losses. Nevertheless, if the risk composition and cost structure are identical 

across the insurers’ portfolios, the R2 at the insurer level is 1.0. So, the R2 at the insurer level is misleading 

because it is not a valid measure of predictable profits and losses on the insured. 
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extreme values in the distribution of expenses than the R2. However, it is unknown what the 

minimum value of the MAPE is that can be achieved with risk equalization models.   

Mutatis mutandis the problems with the interpretation of R2-values as mentioned in the 

sections 2.1 and 2.3 hold similarly for the MAPE-values.  

 

3.2. Cumming’s Prediction Measure (CPM) 

Another measure that does not weigh prediction errors differently, is the Cumming’s 

Prediction Measure (CPM), which is equal to one minus the ratio of the MAPE to the mean 

absolute deviation from the mean expenses (Cumming et al., 2002, p.51). Like the R2, its 

value ranges between zero and one. One could interpret the CPM as the proportion of the 

mean absolute deviation from the mean expenses that is explained or predicted by the linear 

influence of the set of risk adjusters. However, the maximum value of CPM that can be 

achieved with risk equalization models is unknown, because the minimum value of the MAPE 

is unknown. 

Mutatis mutandis the problems with the interpretation of R2-values as mentioned in the 

sections 2.1 and 2.3 hold similarly for the CPM-values.  

 

3.3. Payment System Fit (PSF) 

Zhu et al. (2013) introduced the measure Payment System Fit (PSF) as a generalized form of 

R2 to capture the fit of the entire payment system, i.e., equalization payments plus other 

payments, e.g., from risk sharing (i.e., ex-post cost-based payments to the insurers) and 

premiums. Their PSF is an R2-type statistical measure-of-fit that quantifies the portion of the 

variance in healthcare expenses that is explained by the entire payment system.13 This PSF is 

analogous to Efron’s R2 (1978), which is equal to one minus the ratio of the variance of the 

error term to the variance of the dependent variable. Similar arguments why the R2 is hard to 

interpret (see above) also apply to the PSF. Although Zhu et al. (2013) did not give an explicit 

interpretation of the calculated PSF-values when presenting their empirical results, they 

wrongly gave the impression that maximizing PSF (just like R2) is an objective of the 

payment policy.14  

 

The PSF has also been applied in other studies, e.g., Geruso and McGuire (2016), Beck et al. 

(2020), McGuire et al (2021a), Schmid and Beck (2016), Van Kleef and Van Vliet (2022), 

and Henriquez et al. (2023). In contrast to Zhu et al. (2013) these other studies explicitly use 

the PSF to quantify selection incentives. More specifically, these studies associate a higher 

PSF-value with reduced incentives for risk selection. However, in the case of risk sharing (as 

 
13 To our knowledge Zhu et al. (2013) were the first to introduce this Payment System Fit (PSF). 
14 Zhu et al. (2013, p. 216) motivated the introduction of the Payment System Fit (PSF) as follows: “One 

objective of payment policy is to match payments to expected costs for individuals. Risk adjustment systems are 

commonly graded by their R-squared, a statistic reporting how much of the variation in health care costs is 

explained by the variables in the regression underlying the risk adjustment formula. Our generalization of the 

statistical R-Squared metric reflects how much of the total variation in plan-paid costs is captured by all 

payment-system features.” They rightly stated that an objective of payment policy is to match payments to 

expected costs for individuals. However, as argued above, the R2 measures the fit between payments and actual 

costs, and the same holds for the PSF. Therefore, Zhu et al. (2013) wrongly gave the impression that maximizing 

PSF (just like R2) is an objective of the payment policy. 
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in these studies) this doesn’t have to be true (for a counterexample see Table 1). The PSF-

value indicates the fit between the payments that an insurer receives and the actual expenses, 

while for an indicator of the incentives for risk selection the fit between these payments and 

the predictable expenses is relevant. 

 

In general, it is unknown which portion of actual spending is predictable. Consequently, it is 

unknown whether and to what extent risk sharing (i.e., payments based on actual spending) 

reduces the incentives for risk selection. E.g., in the hypothetical situation that risk 

equalization fully compensates for predictable profits and losses, the addition of risk sharing 

payments can only lead to compensation of unpredictable losses and therefore does not reduce 

the incentives for risk selection. Nevertheless, the PSF-value (strongly) increases.15 The same 

conclusion holds in the case of a very high threshold in the risk sharing scheme such that the 

risk sharing payments only compensate for unpredictable losses. 

 

Van Kleef et al. (2022) present an example that clearly illustrates that in the case of risk 

sharing a higher PSF-value does not necessarily reduce the predictable profits and losses. A 

‘payment system with 50% proportional risk sharing and without risk equalization’ has a PSF-

value of 0.75 and reduces the predictable profits/losses for subgroups of interest by 50% 

(assuming that premiums are community-rated). Although systems with state-of-the-art 

prospective risk equalization have a PSF-value that is much lower (somewhere in the range of 

0.30-0.35), these risk equalization models have been proven to better mitigate predictable 

profits and losses than 50% proportional risk sharing. For example, Van Kleef et al. (2020) 

find that the prospective risk equalization model used in the Netherlands in 2016 has a PSF of 

0.298 and reduces predictable profits/losses for subgroups of interest by 84% (see Table 1).  

So, when comparing different ‘entire payment systems’ the model with the highest PSF-value 

does not necessarily reduce the predictable profits and losses the most, even if they are 

estimated on the same data. 

 

Table 1. A high PSF may not be preferred to a low PSF 

 PSF Reduction of the predictable 

profits/losses for subgroups of 

interest 

Model 1 * 0.750 50% 

Model 2 ** 0.298 84% 

            *  Model 1: A payment system with 50% proportional risk sharing and without risk equalization. 

           ** Model 2: A payment system with risk equalization and without risk sharing. This payment system  

  mimics the risk equalization model used in the Netherlands in 2016. Source: Van Kleef et al. (2020) 

 

In sum, in the context of ‘risk equalization and risk sharing as tools to reduce the predictable 

profits and losses’ the PSF is hard to interpret as a measure of selection incentives, is an 

 
15 In fact, in the case of perfect risk equalization risk sharing might increase the incentives for selection 

depending on the financing of the risk sharing payments. For different forms of risk sharing and different forms 

of financing the risk sharing payments see e.g., Van de Ven and Ellis (2000).  
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inappropriate measure of the extent to which the payment system reduces predictable profits 

and losses, and is therefore not useful for measuring selection incentives. 

 

4. Applications in which R2 can be useful  

Despite the previously discussed problems, in the following cases R2 can be useful.16 

 

4.1. F-test when estimating different equalization formulas on the same data 

In section 2.1 we discussed several determinants of the (maximum) R2 that make it hard to 

compare the R2-values across different settings and over time. When comparing different risk 

equalization formulas that are defined by adding new risk adjusters to the previous formula 

and that are estimated by means of OLS on the same data, this problem does not occur. 

However, as discussed above, it is then still hard to interpret an increase of the R2-value in 

terms of a reduction of the selection incentives, because there is no benchmark (if, as usual, 

the maximum R2 is unknown) and because of the non-linear relation between R2 and the 

predicted profits/losses.17 However, the R2-values can be useful for calculating the F-value to 

perform an F-test to test whether the set of additional risk adjusters, given the set of original 

risk adjusters, jointly make a statistically significant contribution to further explain the 

variance in healthcare expenses (see e.g., Kmenta, 1971, p. 371).  

 

4.2. Evaluating the validity of data used for calibration of risk equalization models  

The R2-value can be informative at the calibration stage of risk equalization models. For 

example, when recalibrating a given risk equalization formula on a more recent data year, the 

R2 might be a helpful indicator to detect changes in cost patterns in the estimation data. A 

substantial decrease or increase in R2-value for the same risk equalization model when going 

from one data year to another might point at a change in cost structures. Researchers might 

want to find the source of such a change when evaluating the validity of the estimation data. 

For example, Cattel et al. (2022) find a substantial decrease in R2-value of the Dutch risk 

equalization model when moving from data-year 2019 to data-year 2020. After further 

research, Cattel et al. (2022) conclude that this decrease was caused by the COVID-19 

pandemic. More specifically, the pandemic lead to a disproportionate increase in 

unpredictable spending variation. After some careful checks, however, the impact on the 

coefficients of the risk equalization model seemed to be limited and the researchers advised to 

use the 2020-data for calibration of the risk equalization model for 2023.  

 

4.3. Evaluating the extent to which ‘constraints’ on the estimated coefficients are binding  

Risk equalization models can include constraints on the estimated coefficients. For example, 

the Dutch risk equalization model-2024 for somatic care includes the restriction that for a 

specific risk class of healthy and unhealthy people (which is not included as a risk adjuster 

 
16 Mutatis mutandis the same holds for MAPE and CPM; not for PSF. 
17 As discussed in section 2.2 this non-linear relation can lead to misleading conclusions in the case of small 

predictable profits and losses. For another interpretation problem see the example given by Van Barneveld et al. 

(2000) discussed in section 2.3. 
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variable) mean predicted spending equals mean actual spending.18 From a statistical point of 

view, the R2-value can be an informative measure to indicate the extent to which a restriction 

is binding, i.e., the extent to which the constraint requires deviations from the original OLS-

estimates. If the constraint is not binding (because it is already fulfilled in the original OLS 

without a constraint), the R2 remains the same. The more a constraint is not fulfilled with the 

original-OLS-estimated coefficients, the more will the constrained-OLS-estimated coefficients of 

the risk adjusters that are correlated with the constraint-factor, (have to) deviate from the original-

OLS-estimated coefficients, and therefore the lower will be the R2 of the constrained regression. 

If the unconstrained OLS and the constrained OLS are estimated on the same data, as we usually 

do, the R2 is a monotonous (although non-linear) measure that allows us to conclude that the 

constraint is more binding the larger the reduction of R2 is (see e.g., Van Kleef et al., 2017, Table 

3). 

 

4.4. Economic rather than statistical measures-of-fit 

The statistical R2 measure does not give any information about (1) whether in practice 

selection will occur, (2) and if so, which forms of selection, and (3) what negative effects 

selection will have. Therefore, in addition to the statistical R2 measure Layton et al. (2017) 

developed an economic R2-type measure to indicate the expected welfare effects of risk 

selection. In doing so, they made assumptions about how financial incentives influence the 

behavior of insurers and consumers, how this can result in price and benefits distortions, and 

how these distortions result in welfare loss. Although this economic R2-type measure is 

useful, in our opinion it should always be carefully described and interpreted in the light of 

the underlying economic model and assumptions (to avoid misinterpretations by readers who 

are not yet familiar with that measure).  

 

5. Conclusion  

Nearly all empirical studies that estimate the coefficients of a risk equalization formula 

present the value of the statistical measure R2, mostly without a clear interpretation. Often the 

R2-value is implicitly interpreted as a measure of the extent to which the risk equalization 

payments remove the regulation-induced predictable profits and losses on the insured, i.e., a 

measure of selection incentives. 

 

In this paper we have argued that in the context of risk equalization R2 is hard to interpret, can 

lead to wrong and misleading conclusions when used as a measure of selection incentives, 

and is therefore not useful for measuring selection incentives. In many cases, we do not know 

whether a model with R2 = 0.30 reduces the predictable profits and losses more than a model 

with R2 = 0.20. So, although in the context of risk equalization research the R2 is the most 

used measure-of-fit (Van Veen et al., 2015) and is often implicitly interpreted as a measure of 

selection incentives, it is not useful for measuring selection incentives. Similar problems hold 

for related statistical measures-of-fit such as the MAPE, CPM, and the PSF. There are some 

exceptions where the R2 can be useful. 

 
18 This type of restriction has been tested in several papers, including Van Kleef et al. (2017), Withagen-Koster 

(2020), McGuire et al. (2021b). 
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Our conclusion is that one should be careful with presenting and interpreting R2-values in risk 

equalization research.  

 

6. Discussion  

 

6.1. How to evaluate the predictive performance of risk equalization models? 

Given our conclusion that the R2 is not useful for measuring selection incentives, one could 

raise the question: Which evaluation measure can be used to appropriately evaluate the 

predictive performance of risk equalization models?  

 

Van Veen et al. (2015) and Layton et al. (2018b) give an overview of statistical19 measures 

for evaluating the predictive performance of risk equalization models. Van Veen et al. (2015) 

give an overview of statistical measures-of-fit that have been used for evaluating risk 

equalization models since 2000 and discussed the properties of 71 measures-of-fit. They 

concluded that the R2 is the most commonly used measure. This underlines the relevance of 

our paper. Van Veen et al. (2015) conclude that “if the objective is measuring financial 

incentives for risk selection, the only adequate evaluation method is to assess the performance 

for selected nonrandom groups of interest” (different from the groups formed by the risk 

adjusters). If the groups are sufficiently large, the difference between the average 

equalization-based predicted expenses and the average actual expenses for relevant non-

random groups (e.g., the chronically ill or healthy people) can be interpreted as the 

over/undercompensations (i.e., predictable profit or loss) for an individual in that group. 

Therefore, a good evaluation measure of the predictive performance of risk equalization 

models is the over/undercompensations for relevant non-random groups.20 An option is to 

present a weighted average of the absolute over/undercompensations of a set of relevant 

 
19 In addition to the statistical R2 measure Layton et al. (2017) developed an economic R2-type measure to 

indicate the expected welfare effects of risk selection. 
20 Alternatively, predictive ratios for relevant non-random groups are presented in the literature (Layton et al., 

2018b). A predictive ratio equals the ratio of the average equalization-based predicted expenses to the average 

actual expenses for relevant non-random groups. For two reasons we prefer the over/undercompensations over 

the predictive ratio to assess the predictive performance of a risk equalization model for selected non-random 

groups. First, a predictive ratio is hard to interpret as a single measure of selection incentives because the 

selection incentive (i.e., the over/undercompensation per group) depends on both the predictive ratio and the 

average actual expenses of the group. So, one should also know the latter to calculate a measure of selection 

incentives. Second, one could hold the view that when comparing the predictive ratios across groups a higher 

predictive ratio is associated with a larger selection incentive. However, this needs not to be true because when 

comparing the predictive ratios across groups there is not necessarily a monotonic relation between the 

predictive ratio and the size of selection incentives. See the following example:  

Group Predictive 

ratio 

Average actual 

expenses (in euro) 

Selection incentive = 

 average predictable loss = 

(predictive ratio - 1) * average actual 

expenses  

A 1.1 4,000 400 

B 1.2 4,000 800 

C 1.3 1,000 300 
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nonrandom groups as a single measure of the predictive performance of a risk equalization 

model (see e.g., Van Kleef et al., 2020).  

 

6.2. Why maximizing R2? 

Given our conclusions about R2, one could raise the question: Does it make sense, as we 

usually do, to maximize the R2-value (i.e., using the OLS regression method) when estimating 

the coefficients of a risk equalization formula? Our answer is: yes. It is important to make a 

distinction between the role of R2 in the estimation method and the R2 as an evaluation 

measure of the predictive performance of a risk equalization model. Our criticism of the R2 

relates only to the R2 as an evaluation measure of the selection incentives.  

 

If we specify a linear relation between individual health expenses and the set of risk adjusters, 

it turns out that under the classical assumptions21 both the Best Linear Unbiased (BLU) 

estimators and the Maximum Likelihood (ML) estimators are equivalent to the OLS 

estimators of the regression parameters (see e.g., Kmenta, 1971, p. 205-216). This implies that 

under the classical assumptions the OLS estimators are unbiased, have the smallest variance 

among all linear unbiased estimators, are consistent and asymptotically efficient.  

Therefore, it is important to emphasize that maximizing the R2 is not an end in itself, it is a 

means to get estimators with very desirable statistical properties (BLU and ML).22  

 

Another question could be: Why do we specify a linear relation between individual health 

expenses and the set of risk adjusters? There are two good arguments to do so. First, by 

specifying a linear relation we stay close to the cell-based approach. Assume that there is only 

one risk adjuster, e.g., age with, say, 24 classes. Then most regulators would use the cell-

based approach, i.e., use the average expenses per age group as the basis for calculating the 

equalization payments (as in e.g., Colombia (Bauhoff et al., 2018), Israel (Brammli-

Greenberg et al, 2018), and in Switzerland till 2020 (Schmid et al., 2018)). If in addition to 

age a second risk adjuster is relevant, e.g., yes/no healthy, most regulators would use the cell-

based approach with 24x2=48 cells. The results of these cell-based approaches are exactly the 

same as the results of OLS with these 24 respectively 48 binary (0/1) risk adjusters as 

dependent variables and no intercept. When there are many additional risk adjusters the 

number of cells may soon become too large. A problem is then that in many cells there are too 

few observations to get reliable results. In addition, many coefficients may not be stable over 

time. A solution is to make the assumption (which is implicitly made in nearly all risk 

equalization models in practice) that most or all interaction terms between the risk adjusters 

are zero. For example, the assumption can be made that the effect of health on expenses is the 

same for each age group. The weights of the equalization formula can then be estimated by 

applying OLS to a linear relation between individual expenses and a manageable number of 

binary (0/1) risk adjusters.  

 
21 For each individual the error is normally distributed, with expectation zero and variance sigma 

(homoskedasticity), and is not correlated with the error terms of other individuals (see e.g., Kmenta, 1971).  
22 Even if the classical assumptions (see previous footnote) are not fulfilled, the OLS-estimators have desirable 

properties. If the error is not normally distributed, the OLS-estimators are still the BLU estimator, i.e., they are 

unbiased and have the smallest variance among all linear unbiased estimators. In the case of heteroscedasticity, 

the OLS estimators are still unbiased and asymptotically efficient (see e.g., Kmenta, 1971, Chapter 8). 



 

Page 18 of 24 
 

A second argument to specify a linear relation between individual health expenses and the set 

of risk adjusters is that a linear relation avoids the complicated retransformation problems 

with making predictions of the individual health expenses when using a nonlinear relation 

(Duan et al, 1983). Examples of nonlinear models include two-part models23 or nonlinear 

transformations of the health expenses such as the logarithm of health expenses (see e.g., 

Manning et al., 1987). However, with the two-part models the predicted expenses are 

seriously biased in the case of heteroscedasticity, and the use of the simple transformation 

log(expenses+1) has very poor statistical properties when calculating the predicted individual 

expenses by retransforming to the original scale (e.g., euros rather than log-euros). (Mullahy, 

1998; Manning, 1998). According to Mullahy (1998) applying OLS to individual health 

expenses may be sufficient when sample sizes are large. 

 

6.3. A high R2 is not necessarily preferred to a low R2 

In section 2.3 we concluded that a high R2 does not necessarily imply a better predictive 

performance than a low R2. However, there are also other reasons why a high R2 is not 

necessarily preferred to a low R2. 

 

A first example is constrained regression. The goal of risk equalization is to eliminate the 

regulation-induced incentives for risk selection by compensating insurers for predictable 

profits and losses (Van de Ven et al., 2023). However, as long as the risk equalization is 

imperfect, the regulator may analyze the potential effects of different selection incentives 

(that result from the over/undercompensations for relevant non-random groups) on the 

insurers’ and consumers’ behavior, analyze what types of selection actions are possible and 

realistic, and what the negative effects of these selection actions are. For example, regulators 

might be particularly concerned about risk selection via the distortion of insurance products 

and via quality skimping (Van de Ven et al., 2015). The regulator could then give priority to 

reduce the predictable profits and losses that induce the selection actions with the most 

negative effects. One tool to do so is constrained regression, which, by definition, results in a 

lower R2 than OLS. For example, Van Kleef et al. (2017) present results showing that adding 

specific constraints to an OLS-regression model reduces the R2, but strongly reduces the 

predictable losses for subgroups of chronically ill people and thereby reduces the incentives 

for quality skimping.24 The regulator may prefer the model with a worse statistical 

performance (in terms of R2) but better economic performance (i.e., fewer selection incentives 

regarding groups of interest) to the model with better statistical performance but worse 

economic performance. That is, the regulator may prefer the model-with-low-R2 to the model-

with-high-R2. 

 
23  In the first part, a yes–no expenses equation is estimated (e.g., a probit, logit, or linear probability model). In 

the second part, for those with positive expenses, the expenses are regressed (a linear, log-linear or square root 

model) on the risk adjusters (see e.g., Manning et al. 1987; Manning, 1998; and Mullahy, 1998). Conventionally, 

both parts of the two-part model are estimated independently and a smearing transformation (see Duan et al, 

1983) is used to generate unbiased estimates of the second part of the model in the common situation in which 

nonlinear transformations of the dependent variable are used.   
24 This example shows that even when comparing different risk equalization formulas that are estimated on the 

same data, it is hard to interpret the R2 without further relevant information, because a low R2 may be preferred 

to a high R2.  
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A second example is optimal risk adjustment. In the literature two different approaches for 

estimating the weights of a risk equalization model can be discerned given a set of risk 

adjusters and risk classes (that result in imperfect risk equalization): the so-called 

‘conventional risk adjustment’ and ‘optimal risk adjustment’. Layton et al. (2018a) describe 

conventional risk adjustment as a two-step “estimate-then-evaluate” approach: first the 

weights for a given risk equalization model are estimated and then second the risk 

equalization model is evaluated based on certain criteria that reflect the regulator’s objective. 

Optimal risk adjustment is described as a one-step “estimate-to-maximize-the-objective” 

approach, where the payment weights are estimated such that the regulator’s objective 

function is maximized.25 If the R2 for optimal risk adjustment is lower than the R2 for 

conventional risk adjustment with the weights estimated by OLS26, the regulator will prefer 

the low R2 to the high R2.   

 

6.4. Why do we use R2 so often? 

Because most of the problems with the R2 (as mentioned in this paper) are already known for 

decades, the question comes to mind: Why do we use R2 so often in risk equalization 

research? Unfortunately, for most studies27 we do not know the answer to this question. 

Possible answers could be that the R2 is presented in risk equalization research (1) because 

most researchers do it, or (2) because R2  is a simple comprehensive measure characterizing 

the entire payment system, or (3) because in other research areas than risk equalization most 

researchers present R2 together with their OLS-results, or (4) because the statistical software 

used to run OLS regressions routinely presents the R2, or (5) because we have been so 

successful in ‘selling the R2-value’ to policy makers and politicians (in the early days when, 

due to data limitations, adequate evaluation criteria were absent) that they ask for it, or (6) 

because there is no other performance measure available. In the latter case it is recommended 

to invest in the collection of appropriate data to calculate useful statistical measures such as 

 
25 If the regulator’s objective is perfectly specified, maximizing this objective function under realistic 

assumptions would be sufficient and would make a further evaluation superfluous. However, several potential 

objectives of the regulator can be discerned, which in ‘optimal risk adjustment’ (so far) are maximized without 

considering the other objectives. Glazer and McGuire (2002) and Layton et al. (2018a) develop a framework 

where the objective is to minimize the efficiency loss from service-level distortions due to adverse selection (i.e., 

a form of direct selection). This objective is relevant for countries such as the United States of America and the 

Netherlands, where individual insurers purchase or deliver the care to their own enrollees, but this objective 

seems less relevant for countries such as Germany and Switzerland, where the insurers collectively purchase the 

care. Lorenz (2017) analyzes optimal risk adjustment where the objective is to eliminate indirect selection (e.g., 

selective advertising, or avoiding people living in high-cost areas). In practice, however, regulators might also be 

concerned with other objectives, such as a level playing field for insurers, the desired level of cross-subsidies, no 

adverse selection into/out the market by consumers, avoiding other negative effects of risk selection, and basing 

equalization payments only on acceptable costs (see e.g., Van de Ven and Ells, 2000). According to Layton et al. 

(2018a) a formal incorporation of all regulator’s objectives within a single social welfare function is probably 

unrealistic. Therefore, also in the case of optimal risk adjustment, after the first step of estimating the payment 

weights, a second step is desirable to evaluate the predictive performance of the risk equalization model. 
26 As is the case in the empirical analyses by Glazer and McGuire (2002), Lorenz (2017) and Layton et al. 

(2018a). 
27 In section 4 we discussed some applications in which R2 can be useful. However, most studies on risk 

equalization that present the R2 fall outside the scope of these applications.  
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the average over/undercompensations per relevant selected non-random group (e.g., 

chronically ill or healthy people)” (Van Veen et al., 2015).  

In general, our recommendation is to either present the R2 with a clear, valid interpretation or 

not to present the R2. The same holds for the related statistical measures MAPE, CPM, and 

PSF. 
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